Feature Selection Based on Multi-Filters for Classification of Mammogram Images to Look for Signs of Breast Cancer
نویسندگان
چکیده
The accuracy of classification results on mammogram images has a significant role in breast cancer diagnosis. Therefore, many stages consider finding the model high level and minimizing computing load, one which is using best feature. This needs to be prioritized considering that image features resulting from extraction process. Our research four stages: feature extraction, selection-multi filters, classification, performance evaluation. Thus, this research, we propose algorithms can select by utilizing multiple filters simultaneously filter for selection based multi-filters/FSbMF. There are six with approach (information gain, rule, relief, correlation, gini index, chi-square) used research. Based testing result 10-fold cross-validation, FSbMF algorithm have accuracy, recall, precision 72,63%, 70,38%, 75,01% 100%. Furthermore, number minimum because it intersection operation subsets multi-filter.
منابع مشابه
application of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولFeature Selection Based on Enhanced Cuckoo Search for Breast Cancer Classification in Mammogram Image
Proposed system has been developed to extract the optimal features from the breast tumors using Enhanced Cuckoo Search (ECS) and presented in this paper. The texture feature, intensity histogram feature, radial distance feature and shape features have been extracted and the optimal feature set has been obtained using ECS. The overall accuracy of a minimum distance classifier and k-Nearest Neigh...
متن کاملRough Set Approach for Classification of Breast Cancer Mammogram Images
Breast cancer represents the second leading cause of cancer deaths in women today and it is the most common type of cancer in women. This paper presents an efficient classification algorithm in digital mammograms in the context of rough set theory. Feature extractions acquired in this work are derived from the gray-level co-occurrence matrix. The features are extracted, normalized and then the ...
متن کاملthe innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولFeature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets
Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kinetik : game technology, information system, computer network, computing, electronics, and control
سال: 2022
ISSN: ['2503-2259', '2503-2267']
DOI: https://doi.org/10.22219/kinetik.v7i3.1437